2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153349%22&qt=morelikethis&rows=5
2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153349%22&qt=morelikethis&rows=5
2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:01:17-05:00 DEBUG: Deserialized SOLR response
On graphs with graphic imbalance sequences
The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2014
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/153349 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-153349 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533492019-06-15T01:26:57Z On graphs with graphic imbalance sequences Kozerenko, S. Skochko, V. The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of MG. 2014 Article On graphs with graphic imbalance sequences / S. Kozerenko, V. Skochko // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 97–108. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:05C07, 05C99. http://dspace.nbuv.gov.ua/handle/123456789/153349 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of MG. |
format |
Article |
author |
Kozerenko, S. Skochko, V. |
spellingShingle |
Kozerenko, S. Skochko, V. On graphs with graphic imbalance sequences Algebra and Discrete Mathematics |
author_facet |
Kozerenko, S. Skochko, V. |
author_sort |
Kozerenko, S. |
title |
On graphs with graphic imbalance sequences |
title_short |
On graphs with graphic imbalance sequences |
title_full |
On graphs with graphic imbalance sequences |
title_fullStr |
On graphs with graphic imbalance sequences |
title_full_unstemmed |
On graphs with graphic imbalance sequences |
title_sort |
on graphs with graphic imbalance sequences |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153349 |
citation_txt |
On graphs with graphic imbalance sequences / S. Kozerenko, V. Skochko // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 97–108. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kozerenkos ongraphswithgraphicimbalancesequences AT skochkov ongraphswithgraphicimbalancesequences |
first_indexed |
2023-05-20T17:38:31Z |
last_indexed |
2023-05-20T17:38:31Z |
_version_ |
1796153758740119552 |