2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153349%22&qt=morelikethis&rows=5
2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153349%22&qt=morelikethis&rows=5
2025-02-23T06:01:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:01:17-05:00 DEBUG: Deserialized SOLR response

On graphs with graphic imbalance sequences

The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths...

Full description

Saved in:
Bibliographic Details
Main Authors: Kozerenko, S., Skochko, V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153349
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-153349
record_format dspace
spelling irk-123456789-1533492019-06-15T01:26:57Z On graphs with graphic imbalance sequences Kozerenko, S. Skochko, V. The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of MG. 2014 Article On graphs with graphic imbalance sequences / S. Kozerenko, V. Skochko // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 97–108. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:05C07, 05C99. http://dspace.nbuv.gov.ua/handle/123456789/153349 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The imbalance of the edge e = uv in a graph G is the value imbG(e) = |dG(u) − dG(v)|. We prove that the sequence MG of all edge imbalances in G is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of MG.
format Article
author Kozerenko, S.
Skochko, V.
spellingShingle Kozerenko, S.
Skochko, V.
On graphs with graphic imbalance sequences
Algebra and Discrete Mathematics
author_facet Kozerenko, S.
Skochko, V.
author_sort Kozerenko, S.
title On graphs with graphic imbalance sequences
title_short On graphs with graphic imbalance sequences
title_full On graphs with graphic imbalance sequences
title_fullStr On graphs with graphic imbalance sequences
title_full_unstemmed On graphs with graphic imbalance sequences
title_sort on graphs with graphic imbalance sequences
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153349
citation_txt On graphs with graphic imbalance sequences / S. Kozerenko, V. Skochko // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 97–108. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kozerenkos ongraphswithgraphicimbalancesequences
AT skochkov ongraphswithgraphicimbalancesequences
first_indexed 2023-05-20T17:38:31Z
last_indexed 2023-05-20T17:38:31Z
_version_ 1796153758740119552