Effective ring

In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Zabavsky, B.V., Kuznitska, B.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153352
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153352
record_format dspace
spelling irk-123456789-1533522019-06-15T01:28:33Z Effective ring Zabavsky, B.V. Kuznitska, B.M. In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. 2014 Article Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC:13F99. http://dspace.nbuv.gov.ua/handle/123456789/153352 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
format Article
author Zabavsky, B.V.
Kuznitska, B.M.
spellingShingle Zabavsky, B.V.
Kuznitska, B.M.
Effective ring
Algebra and Discrete Mathematics
author_facet Zabavsky, B.V.
Kuznitska, B.M.
author_sort Zabavsky, B.V.
title Effective ring
title_short Effective ring
title_full Effective ring
title_fullStr Effective ring
title_full_unstemmed Effective ring
title_sort effective ring
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153352
citation_txt Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zabavskybv effectivering
AT kuznitskabm effectivering
first_indexed 2023-05-20T17:38:32Z
last_indexed 2023-05-20T17:38:32Z
_version_ 1796153759055740928