Effective ring
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153352 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153352 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533522019-06-15T01:28:33Z Effective ring Zabavsky, B.V. Kuznitska, B.M. In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. 2014 Article Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC:13F99. http://dspace.nbuv.gov.ua/handle/123456789/153352 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. |
format |
Article |
author |
Zabavsky, B.V. Kuznitska, B.M. |
spellingShingle |
Zabavsky, B.V. Kuznitska, B.M. Effective ring Algebra and Discrete Mathematics |
author_facet |
Zabavsky, B.V. Kuznitska, B.M. |
author_sort |
Zabavsky, B.V. |
title |
Effective ring |
title_short |
Effective ring |
title_full |
Effective ring |
title_fullStr |
Effective ring |
title_full_unstemmed |
Effective ring |
title_sort |
effective ring |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153352 |
citation_txt |
Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT zabavskybv effectivering AT kuznitskabm effectivering |
first_indexed |
2023-05-20T17:38:32Z |
last_indexed |
2023-05-20T17:38:32Z |
_version_ |
1796153759055740928 |