The Tits alternative for generalized triangle groups of type (3,4,2)

A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Ti...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Howie, J., Williams, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153357
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153357
record_format dspace
spelling irk-123456789-1533572019-06-15T01:26:40Z The Tits alternative for generalized triangle groups of type (3,4,2) Howie, J. Williams, G. A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p,q,r) is one of (2,3,2), (2,4,2), (2,5,2), (3,3,2), (3,4,2), or (3,5,2). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case (p,q,r)=(3,4,2). 2008 Article The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20F05, 20E05, 57M07. http://dspace.nbuv.gov.ua/handle/123456789/153357 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p,q,r) is one of (2,3,2), (2,4,2), (2,5,2), (3,3,2), (3,4,2), or (3,5,2). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case (p,q,r)=(3,4,2).
format Article
author Howie, J.
Williams, G.
spellingShingle Howie, J.
Williams, G.
The Tits alternative for generalized triangle groups of type (3,4,2)
Algebra and Discrete Mathematics
author_facet Howie, J.
Williams, G.
author_sort Howie, J.
title The Tits alternative for generalized triangle groups of type (3,4,2)
title_short The Tits alternative for generalized triangle groups of type (3,4,2)
title_full The Tits alternative for generalized triangle groups of type (3,4,2)
title_fullStr The Tits alternative for generalized triangle groups of type (3,4,2)
title_full_unstemmed The Tits alternative for generalized triangle groups of type (3,4,2)
title_sort tits alternative for generalized triangle groups of type (3,4,2)
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/153357
citation_txt The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT howiej thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsg thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT howiej titsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsg titsalternativeforgeneralizedtrianglegroupsoftype342
first_indexed 2023-05-20T17:38:44Z
last_indexed 2023-05-20T17:38:44Z
_version_ 1796153768514945024