2025-02-22T10:34:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153361%22&qt=morelikethis&rows=5
2025-02-22T10:34:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153361%22&qt=morelikethis&rows=5
2025-02-22T10:34:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:34:24-05:00 DEBUG: Deserialized SOLR response

Balleans of bounded geometry and G-spaces

A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean...

Full description

Saved in:
Bibliographic Details
Main Author: Protasov, I.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2008
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153361
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-153361
record_format dspace
spelling irk-123456789-1533612019-06-15T01:25:42Z Balleans of bounded geometry and G-spaces Protasov, I.V. A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X determined by some group of permutations of X. 2008 Article Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 37B05, 54E15. http://dspace.nbuv.gov.ua/handle/123456789/153361 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X determined by some group of permutations of X.
format Article
author Protasov, I.V.
spellingShingle Protasov, I.V.
Balleans of bounded geometry and G-spaces
Algebra and Discrete Mathematics
author_facet Protasov, I.V.
author_sort Protasov, I.V.
title Balleans of bounded geometry and G-spaces
title_short Balleans of bounded geometry and G-spaces
title_full Balleans of bounded geometry and G-spaces
title_fullStr Balleans of bounded geometry and G-spaces
title_full_unstemmed Balleans of bounded geometry and G-spaces
title_sort balleans of bounded geometry and g-spaces
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/153361
citation_txt Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT protasoviv balleansofboundedgeometryandgspaces
first_indexed 2023-05-20T17:38:45Z
last_indexed 2023-05-20T17:38:45Z
_version_ 1796153759265456128