The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata

Let Zn be a cubical lattice in the Euclidean space Rn. The generalized dihedral group Dih(Zn) is a topologically discrete group of isometries of Zn generated by translations and reflections in all points from Zn. We study this group as a group generated by a (2n+2)-state time-varying automaton o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Woryna, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153364
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata / A. Woryna // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 98–101. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153364
record_format dspace
spelling irk-123456789-1533642019-06-15T01:26:23Z The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata Woryna, A. Let Zn be a cubical lattice in the Euclidean space Rn. The generalized dihedral group Dih(Zn) is a topologically discrete group of isometries of Zn generated by translations and reflections in all points from Zn. We study this group as a group generated by a (2n+2)-state time-varying automaton over the changing alphabet. The corresponding action on the set of words is described. 2008 Article The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata / A. Woryna // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 98–101. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20E22, 20E08, 20F65. http://dspace.nbuv.gov.ua/handle/123456789/153364 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Zn be a cubical lattice in the Euclidean space Rn. The generalized dihedral group Dih(Zn) is a topologically discrete group of isometries of Zn generated by translations and reflections in all points from Zn. We study this group as a group generated by a (2n+2)-state time-varying automaton over the changing alphabet. The corresponding action on the set of words is described.
format Article
author Woryna, A.
spellingShingle Woryna, A.
The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
Algebra and Discrete Mathematics
author_facet Woryna, A.
author_sort Woryna, A.
title The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
title_short The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
title_full The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
title_fullStr The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
title_full_unstemmed The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata
title_sort generalized dihedral groups dih(zn) as groups generated by time-varying automata
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/153364
citation_txt The generalized dihedral groups Dih(Zn) as groups generated by time-varying automata / A. Woryna // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 98–101. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT worynaa thegeneralizeddihedralgroupsdihznasgroupsgeneratedbytimevaryingautomata
AT worynaa generalizeddihedralgroupsdihznasgroupsgeneratedbytimevaryingautomata
first_indexed 2023-05-20T17:38:46Z
last_indexed 2023-05-20T17:38:46Z
_version_ 1796153768829517824