Random walks on finite groups converging after finite number of steps

Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Vyshnevetskiy, A.L., Zhmud, E.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153370
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G.