Random walks on finite groups converging after finite number of steps
Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153370 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153370 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533702019-06-15T01:25:43Z Random walks on finite groups converging after finite number of steps Vyshnevetskiy, A.L. Zhmud, E.M. Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G. 2008 Article Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20P05, 60B15. http://dspace.nbuv.gov.ua/handle/123456789/153370 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G. |
format |
Article |
author |
Vyshnevetskiy, A.L. Zhmud, E.M. |
spellingShingle |
Vyshnevetskiy, A.L. Zhmud, E.M. Random walks on finite groups converging after finite number of steps Algebra and Discrete Mathematics |
author_facet |
Vyshnevetskiy, A.L. Zhmud, E.M. |
author_sort |
Vyshnevetskiy, A.L. |
title |
Random walks on finite groups converging after finite number of steps |
title_short |
Random walks on finite groups converging after finite number of steps |
title_full |
Random walks on finite groups converging after finite number of steps |
title_fullStr |
Random walks on finite groups converging after finite number of steps |
title_full_unstemmed |
Random walks on finite groups converging after finite number of steps |
title_sort |
random walks on finite groups converging after finite number of steps |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153370 |
citation_txt |
Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT vyshnevetskiyal randomwalksonfinitegroupsconvergingafterfinitenumberofsteps AT zhmudem randomwalksonfinitegroupsconvergingafterfinitenumberofsteps |
first_indexed |
2023-05-20T17:38:47Z |
last_indexed |
2023-05-20T17:38:47Z |
_version_ |
1796153759584223232 |