Random walks on finite groups converging after finite number of steps

Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Vyshnevetskiy, A.L., Zhmud, E.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153370
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153370
record_format dspace
spelling irk-123456789-1533702019-06-15T01:25:43Z Random walks on finite groups converging after finite number of steps Vyshnevetskiy, A.L. Zhmud, E.M. Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G. 2008 Article Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20P05, 60B15. http://dspace.nbuv.gov.ua/handle/123456789/153370 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G.
format Article
author Vyshnevetskiy, A.L.
Zhmud, E.M.
spellingShingle Vyshnevetskiy, A.L.
Zhmud, E.M.
Random walks on finite groups converging after finite number of steps
Algebra and Discrete Mathematics
author_facet Vyshnevetskiy, A.L.
Zhmud, E.M.
author_sort Vyshnevetskiy, A.L.
title Random walks on finite groups converging after finite number of steps
title_short Random walks on finite groups converging after finite number of steps
title_full Random walks on finite groups converging after finite number of steps
title_fullStr Random walks on finite groups converging after finite number of steps
title_full_unstemmed Random walks on finite groups converging after finite number of steps
title_sort random walks on finite groups converging after finite number of steps
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/153370
citation_txt Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT vyshnevetskiyal randomwalksonfinitegroupsconvergingafterfinitenumberofsteps
AT zhmudem randomwalksonfinitegroupsconvergingafterfinitenumberofsteps
first_indexed 2023-05-20T17:38:47Z
last_indexed 2023-05-20T17:38:47Z
_version_ 1796153759584223232