Prime radical of Ore extensions over δ -rigid rings
Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153379 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153379 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533792019-06-15T01:26:19Z Prime radical of Ore extensions over δ -rigid rings Bhat, V.K. Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers). 2009 Article Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16-XX; 16P40,16P50,16U20. http://dspace.nbuv.gov.ua/handle/123456789/153379 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers). |
format |
Article |
author |
Bhat, V.K. |
spellingShingle |
Bhat, V.K. Prime radical of Ore extensions over δ -rigid rings Algebra and Discrete Mathematics |
author_facet |
Bhat, V.K. |
author_sort |
Bhat, V.K. |
title |
Prime radical of Ore extensions over δ -rigid rings |
title_short |
Prime radical of Ore extensions over δ -rigid rings |
title_full |
Prime radical of Ore extensions over δ -rigid rings |
title_fullStr |
Prime radical of Ore extensions over δ -rigid rings |
title_full_unstemmed |
Prime radical of Ore extensions over δ -rigid rings |
title_sort |
prime radical of ore extensions over δ -rigid rings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153379 |
citation_txt |
Prime radical of Ore extensions over δ
-rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bhatvk primeradicaloforeextensionsoverdrigidrings |
first_indexed |
2023-05-20T17:38:48Z |
last_indexed |
2023-05-20T17:38:48Z |
_version_ |
1796153770093051904 |