Prime radical of Ore extensions over δ -rigid rings

Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Bhat, V.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153379
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153379
record_format dspace
spelling irk-123456789-1533792019-06-15T01:26:19Z Prime radical of Ore extensions over δ -rigid rings Bhat, V.K. Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers). 2009 Article Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16-XX; 16P40,16P50,16U20. http://dspace.nbuv.gov.ua/handle/123456789/153379 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers).
format Article
author Bhat, V.K.
spellingShingle Bhat, V.K.
Prime radical of Ore extensions over δ -rigid rings
Algebra and Discrete Mathematics
author_facet Bhat, V.K.
author_sort Bhat, V.K.
title Prime radical of Ore extensions over δ -rigid rings
title_short Prime radical of Ore extensions over δ -rigid rings
title_full Prime radical of Ore extensions over δ -rigid rings
title_fullStr Prime radical of Ore extensions over δ -rigid rings
title_full_unstemmed Prime radical of Ore extensions over δ -rigid rings
title_sort prime radical of ore extensions over δ -rigid rings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/153379
citation_txt Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bhatvk primeradicaloforeextensionsoverdrigidrings
first_indexed 2023-05-20T17:38:48Z
last_indexed 2023-05-20T17:38:48Z
_version_ 1796153770093051904