Факторизация линейных групп и групп, обладающих нормальной системой с линейными факторами

Исследуются (в основном факторизационные) свойства групп, указанных в названии статьи. Например, установлено, что периодическая линейная группа обладает разрешимой подгруппой конечного индекса тогда и только тогда, когда она может быть представлена в виде произведения двух подгрупп, каждая из которы...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1988
Автор: Черников, Н.С.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1988
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153398
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Факторизация линейных групп и групп, обладающих нормальной системой с линейными факторами / Н.С. Черников // Український математичний журнал. — 1988. — Т. 40, № 3. — С. 362–369. — Бібліогр.: 15 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Исследуются (в основном факторизационные) свойства групп, указанных в названии статьи. Например, установлено, что периодическая линейная группа обладает разрешимой подгруппой конечного индекса тогда и только тогда, когда она может быть представлена в виде произведения двух подгрупп, каждая из которых имеет локально нильпотентную подгруппу конечного индекса. Доказано также, что периодическая линейная группа (или даже фактор-группа такой группы) содержит разрешимую подгруппу конечного индекса, если она разложима в произведение конечного числа попарно перестановочных подгрупп, каждая из которых имеет локально нильпотентную подгруппу конечного индекса. Далее, доказано, что не более чем счетная локально конечная группа локально разрешима тогда и только тогда, когда она обладает нормальной системой с линейными факторами и при этом может быть представлена в виде произведения некоторых локально нильпотентных подгрупп, попарно перестановочных и попарно не имеющих элементов одинаковых не роавных 1 порядков.