Lagrangian approach in spin-oscillations problem

Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Pyshkin, P.V., Kopeliovich, A.I., Yanovsky, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153457
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lagrangian approach in spin-oscillations problem / P.V. Pyshkin, A.I. Kopeliovich, A.V. Yanovsky // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43801: 1–4. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153457
record_format dspace
spelling irk-123456789-1534572019-06-15T01:25:49Z Lagrangian approach in spin-oscillations problem Pyshkin, P.V. Kopeliovich, A.I. Yanovsky, A.V. Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits to study the spin dynamics in an open-circuit which contains capacitance and/or inductivity. Побудовано Лагранжiан електронної рiдини в магнiтно-неоднорiдному мiкропровiднику. Розв’язано вiдповiдне рiвняння Ейлера-Лагранжа. Показано, що описана система має власнi моди спiнової поляризацiї i осциляцiї сумарного електричного струму. Запропонований пiдхiд дозволяє вивчати спiнову динамiку у вiдкритому контурi, який мiстить ємнiсть i/чи iндуктивнiсть. 2014 Article Lagrangian approach in spin-oscillations problem / P.V. Pyshkin, A.I. Kopeliovich, A.V. Yanovsky // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43801: 1–4. — Бібліогр.: 7 назв. — англ. 1607-324X arXiv:1312.4138 DOI:10.5488/CMP.17.43801 PACS: 81.05.Xj, 75.70.Cn, 75.85.+t http://dspace.nbuv.gov.ua/handle/123456789/153457 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits to study the spin dynamics in an open-circuit which contains capacitance and/or inductivity.
format Article
author Pyshkin, P.V.
Kopeliovich, A.I.
Yanovsky, A.V.
spellingShingle Pyshkin, P.V.
Kopeliovich, A.I.
Yanovsky, A.V.
Lagrangian approach in spin-oscillations problem
Condensed Matter Physics
author_facet Pyshkin, P.V.
Kopeliovich, A.I.
Yanovsky, A.V.
author_sort Pyshkin, P.V.
title Lagrangian approach in spin-oscillations problem
title_short Lagrangian approach in spin-oscillations problem
title_full Lagrangian approach in spin-oscillations problem
title_fullStr Lagrangian approach in spin-oscillations problem
title_full_unstemmed Lagrangian approach in spin-oscillations problem
title_sort lagrangian approach in spin-oscillations problem
publisher Інститут фізики конденсованих систем НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153457
citation_txt Lagrangian approach in spin-oscillations problem / P.V. Pyshkin, A.I. Kopeliovich, A.V. Yanovsky // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43801: 1–4. — Бібліогр.: 7 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT pyshkinpv lagrangianapproachinspinoscillationsproblem
AT kopeliovichai lagrangianapproachinspinoscillationsproblem
AT yanovskyav lagrangianapproachinspinoscillationsproblem
first_indexed 2023-05-20T17:39:54Z
last_indexed 2023-05-20T17:39:54Z
_version_ 1796153810926698496