Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2014
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153499 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes / P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23606:1-14. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both the kinetic and nonlinear hydrodynamic processes. Both a kinetic equation for the nonequilibrium one-particle distribution function and a generalized Fokker-Planck equation for nonequilibrium distribution function of hydrodynamic variables (densities of momentum, energy and particle number) are obtained. A structure function of hydrodynamic fluctuations in cumulant representation is calculated, which makes it possible to analyse the generalized Fokker-Planck equation in Gaussian and higher approximations of the dynamic correlations of hydrodynamic variables which is important in describing the quantum turbulent processes. |
---|