Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes

Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Hlushak, P.A., Tokarchuk, M.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153499
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes / P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23606:1-14. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153499
record_format dspace
spelling irk-123456789-1534992019-06-15T01:27:12Z Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes Hlushak, P.A. Tokarchuk, M.V. Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both the kinetic and nonlinear hydrodynamic processes. Both a kinetic equation for the nonequilibrium one-particle distribution function and a generalized Fokker-Planck equation for nonequilibrium distribution function of hydrodynamic variables (densities of momentum, energy and particle number) are obtained. A structure function of hydrodynamic fluctuations in cumulant representation is calculated, which makes it possible to analyse the generalized Fokker-Planck equation in Gaussian and higher approximations of the dynamic correlations of hydrodynamic variables which is important in describing the quantum turbulent processes. Використовуючи метод нерiвноважного статистичного оператора Зубарєва, запропоновано пiдхiд для опису кiнетики з врахуванням нелiнiйних гiдродинамiчних флуктуацiй для квантової бозе-системи. Розраховано нерiвноважний статистичний оператор, що узгоджено описує як кiнетичнi, так i нелiнiйнi гiдродинамiчнi процеси. Отримано кiнетичне рiвняння для нерiвноважної одночастинкової функцiї розподiлу та узагальнене рiвняння Фоккера-Планка для гiдродинамiчних змiнних (густин iмпульсу, енергiї i кiлькостi частинок). В кумулянтному наближеннi розраховано структурну функцiю гiдродинамiчних флуктуацiй. Це надає можливiсть проаналiзувати узагальнене рiвняння Фоккера-Планка в гаусовому i вищих наближеннях для динамiчних кореляцiй, що важливо для опису квантових турбулентних процесiв. 2014 Article Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes / P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23606:1-14. — Бібліогр.: 49 назв. — англ. 1607-324X arXiv:1301.0481 DOI:10.5488/CMP.17.23606 PACS: 67.40.-w, 47.37.+q http://dspace.nbuv.gov.ua/handle/123456789/153499 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both the kinetic and nonlinear hydrodynamic processes. Both a kinetic equation for the nonequilibrium one-particle distribution function and a generalized Fokker-Planck equation for nonequilibrium distribution function of hydrodynamic variables (densities of momentum, energy and particle number) are obtained. A structure function of hydrodynamic fluctuations in cumulant representation is calculated, which makes it possible to analyse the generalized Fokker-Planck equation in Gaussian and higher approximations of the dynamic correlations of hydrodynamic variables which is important in describing the quantum turbulent processes.
format Article
author Hlushak, P.A.
Tokarchuk, M.V.
spellingShingle Hlushak, P.A.
Tokarchuk, M.V.
Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
Condensed Matter Physics
author_facet Hlushak, P.A.
Tokarchuk, M.V.
author_sort Hlushak, P.A.
title Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
title_short Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
title_full Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
title_fullStr Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
title_full_unstemmed Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes
title_sort quantum transport equations for bose systems taking into account nonlinear hydrodynamic processes
publisher Інститут фізики конденсованих систем НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153499
citation_txt Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes / P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23606:1-14. — Бібліогр.: 49 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT hlushakpa quantumtransportequationsforbosesystemstakingintoaccountnonlinearhydrodynamicprocesses
AT tokarchukmv quantumtransportequationsforbosesystemstakingintoaccountnonlinearhydrodynamicprocesses
first_indexed 2023-05-20T17:39:39Z
last_indexed 2023-05-20T17:39:39Z
_version_ 1796153801872244736