N-point free energy distribution function in one dimensional random directed polymers

Explicit expression for the N-point free energy distribution function in one dimensional directed polymers in a random potential is derived in terms of the Bethe ansatz replica technique. The obtained result is equivalent to the one derived earlier by Prolhac and Spohn [J. Stat. Mech., 2011, P03020]...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Dotsenko, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153503
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:N-point free energy distribution function in one dimensional random directed polymers / V. Dotsenko // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33003:1-10. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153503
record_format dspace
spelling irk-123456789-1535032019-06-15T01:26:50Z N-point free energy distribution function in one dimensional random directed polymers Dotsenko, V. Explicit expression for the N-point free energy distribution function in one dimensional directed polymers in a random potential is derived in terms of the Bethe ansatz replica technique. The obtained result is equivalent to the one derived earlier by Prolhac and Spohn [J. Stat. Mech., 2011, P03020]. Отримано явний вираз для N-точкової функцiї розподiлу вiльної енергiї в одновимiрному напрямленому полiмерi в термiнах анзацу Бете в рамках методу реплiк. Отриманий результат еквiвалентний результату, ранiше отриманому в роботi Пролака i Шпона [J. Stat. Mech., 2011, P03020]. 2014 Article N-point free energy distribution function in one dimensional random directed polymers / V. Dotsenko // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33003:1-10. — Бібліогр.: 38 назв. — англ. 1607-324X PACS: 05.20.-y, 75.10.Nr, 74.25.Qt, 61.41.+e DOI:10.5488/CMP.17.33003 arXiv:1410.4167 http://dspace.nbuv.gov.ua/handle/123456789/153503 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Explicit expression for the N-point free energy distribution function in one dimensional directed polymers in a random potential is derived in terms of the Bethe ansatz replica technique. The obtained result is equivalent to the one derived earlier by Prolhac and Spohn [J. Stat. Mech., 2011, P03020].
format Article
author Dotsenko, V.
spellingShingle Dotsenko, V.
N-point free energy distribution function in one dimensional random directed polymers
Condensed Matter Physics
author_facet Dotsenko, V.
author_sort Dotsenko, V.
title N-point free energy distribution function in one dimensional random directed polymers
title_short N-point free energy distribution function in one dimensional random directed polymers
title_full N-point free energy distribution function in one dimensional random directed polymers
title_fullStr N-point free energy distribution function in one dimensional random directed polymers
title_full_unstemmed N-point free energy distribution function in one dimensional random directed polymers
title_sort n-point free energy distribution function in one dimensional random directed polymers
publisher Інститут фізики конденсованих систем НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153503
citation_txt N-point free energy distribution function in one dimensional random directed polymers / V. Dotsenko // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33003:1-10. — Бібліогр.: 38 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT dotsenkov npointfreeenergydistributionfunctioninonedimensionalrandomdirectedpolymers
first_indexed 2023-05-20T17:39:55Z
last_indexed 2023-05-20T17:39:55Z
_version_ 1796153802191011840