The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite

Using Monte Carlo simulation method in the canonical ensemble, we have studied the commensurate-incommensurate transition in two-dimensional finite mixed clusters of Ar and Kr adsorbed on graphite basal plane at low temperatures. It has been demonstrated that the transition occurs when the argon con...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Patrykiejew, A., Soko\lowski, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153531
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite / A. Patrykiejew, S. Soko\lowski // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43601: 1–14. — Бібліогр.: 66 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Using Monte Carlo simulation method in the canonical ensemble, we have studied the commensurate-incommensurate transition in two-dimensional finite mixed clusters of Ar and Kr adsorbed on graphite basal plane at low temperatures. It has been demonstrated that the transition occurs when the argon concentration exceeds the value needed to cover the peripheries of the cluster. The incommensurate phase exhibits a similar domain-wall structure as observed in pure krypton films at the densities exceeding the density of a perfect (√3x√3)R30º commensurate phase, but the size of commensurate domains does not change much with the cluster size. When the argon concentration increases, the composition of domain walls changes while the commensurate domains are made of pure krypton. We have constructed a simple one-dimensional Frenkel-Kontorova-like model that yields the results being in a good qualitative agreement with the Monte Carlo results obtained for two-dimensional systems.