Random-field Ising model: Insight from zero-temperature simulations

We enlighten some critical aspects of the three-dimensional (d=3) random-field Ising model (RFIM) from simulations performed at zero temperature. We consider two different, in terms of the field distribution, versions of model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Theodorakis, P.E., Fytas, N.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153534
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Random-field Ising model: Insight from zero-temperature simulations / P.E.Theodorakis, N.G. Fytas // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43003: 1–14. — Бібліогр.: 81 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We enlighten some critical aspects of the three-dimensional (d=3) random-field Ising model (RFIM) from simulations performed at zero temperature. We consider two different, in terms of the field distribution, versions of model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and systems sizes V=LxLxL, where L denotes linear lattice size and Lmax=156. Using as finite-size measures the sample-to-sample fluctuations of various quantities of physical and technical origin, and the primitive operations of the push-relabel algorithm, we propose, for both types of distributions, estimates of the critical field hmax and the critical exponent ν of the correlation length, the latter clearly suggesting that both models share the same universality class. Additional simulations of the Gaussian RFIM at the best-known value of the critical field provide the magnetic exponent ratio β/ν with high accuracy and clear out the controversial issue of the critical exponent α of the specific heat. Finally, we discuss the infinite-limit size extrapolation of energy- and order-parameter-based noise to signal ratios related to the self-averaging properties of the model, as well as the critical slowing down aspects of the algorithm.