Stability of the Griffiths phase in a 2D Potts model with correlated disorder
A Griffiths phase has recently been observed by Monte Carlo simulations in the 2D q-state Potts model with strongly correlated quenched random couplings. In particular, the magnetic susceptibility was shown to diverge algebraically with the lattice size in a broad range of temperatures. However, onl...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2014
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153557 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Stability of the Griffiths phase in a 2D Potts model with correlated disorder / C. Chatelain // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33601:1-11. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A Griffiths phase has recently been observed by Monte Carlo simulations in the 2D q-state Potts model with strongly correlated quenched random couplings. In particular, the magnetic susceptibility was shown to diverge algebraically with the lattice size in a broad range of temperatures. However, only relatively small lattice sizes could be considered, so one can wonder whether this Griffiths phase will not shrink and collapse into a single point, the critical point, as the lattice size is increased to much larger values. In this paper, the 2D eight-state Potts model is numerically studied for four different disorder correlations. It is shown that the Griffiths phase cannot be explained as a simple spreading of local transition temperatures caused by disorder fluctuations. As a consequence, the vanishing of the latter in the thermodynamic limit does not necessarily imply the collapse of the Griffiths phase into a single point. By contrast, the width of the Griffiths phase is controlled by the disorder strength. However, for disorder correlations decaying slower than 1/r, no cross-over to a more usual critical behavior could be observed as this strength is tuned to weaker values. |
---|