2025-02-23T03:57:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153585%22&qt=morelikethis&rows=5
2025-02-23T03:57:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153585%22&qt=morelikethis&rows=5
2025-02-23T03:57:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:57:45-05:00 DEBUG: Deserialized SOLR response

Microphase transitions of block copolymer/homopolymer under shear flow

Cell dynamics simulation is used to investigate the phase behavior of block copolymer/homopolymer mixture subjected to a steady shear flow. Phase transitions occur from transverse to parallel and then to perpendicular lamellar structure with an increase of shear rate and this is the result of intera...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo, Y., Zhang, J., Wang, B., Wu, H., Sun, M., Pan, J.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2015
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153585
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell dynamics simulation is used to investigate the phase behavior of block copolymer/homopolymer mixture subjected to a steady shear flow. Phase transitions occur from transverse to parallel and then to perpendicular lamellar structure with an increase of shear rate and this is the result of interaction between the shear flow and the concentration fluctuation. Rheological properties, such as normal stress differences and shear viscosity, are all closely related with the direction of the lamellae. Furthermore, we specifically explore the phase behavior and the order parameter under weak and strong shear of two different initial states, and realize the importance of the thermal history. It is necessary to apply the shear field at the appropriate time if we want to get what we want. These results provide an easy method to create ordered, defect-free materials in experiment and engineering technology through imposing shear flow.