Some soluble groups of finite rank and some related matrix groups

Let G be a torsion-free soluble group of finite rank and F ane field. The group algebra FG is an Ore domain; let D denote its division ring of quotients. it Seems likely that D is always locally residually finite-dimensional over F. this is certainly so in the non-modular case. Here in some special...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1991
Автор: Wehrfritz, B.A.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1991
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153877
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some soluble groups of finite rank and some related matrix groups / B.A.F. Wehrfritz // Український математичний журнал. — 1991. — Т. 43, № 7-8. — С. 894–901. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let G be a torsion-free soluble group of finite rank and F ane field. The group algebra FG is an Ore domain; let D denote its division ring of quotients. it Seems likely that D is always locally residually finite-dimensional over F. this is certainly so in the non-modular case. Here in some special situations we settle the modular case. We include some applications to groups of matrices.