Some soluble groups of finite rank and some related matrix groups
Let G be a torsion-free soluble group of finite rank and F ane field. The group algebra FG is an Ore domain; let D denote its division ring of quotients. it Seems likely that D is always locally residually finite-dimensional over F. this is certainly so in the non-modular case. Here in some special...
Збережено в:
Дата: | 1991 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1991
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153877 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Some soluble groups of finite rank and some related matrix groups / B.A.F. Wehrfritz // Український математичний журнал. — 1991. — Т. 43, № 7-8. — С. 894–901. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let G be a torsion-free soluble group of finite rank and F ane field. The group algebra FG is an Ore domain; let D denote its division ring of quotients. it Seems likely that D is always locally residually finite-dimensional over F. this is certainly so in the non-modular case. Here in some special situations we settle the modular case. We include some applications to groups of matrices. |
---|