Сопряженные подпространства и инъекции банаховых пространств

Устанавливается связь между существованием в банаховом пространстве подпространств, изометричных (изоморфных) сопряженным, и существованием инъекций пространства с некоторыми специальными свойствами. Например, если пространство допускает неизоморфную инъекцию (в некоторое банахово пространство) таку...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1987
Автор: Фонф, В.П.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1987
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154032
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Сопряженные подпространства и инъекции банаховых пространств / В.П. Фонф // Український математичний журнал. — 1987. — Т. 39, № 3. — С. 364-369. — Бібліогр.: 7 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Устанавливается связь между существованием в банаховом пространстве подпространств, изометричных (изоморфных) сопряженным, и существованием инъекций пространства с некоторыми специальными свойствами. Например, если пространство допускает неизоморфную инъекцию (в некоторое банахово пространство) такую, что образ всякого ограниченного замкнутого множества есть множество типа Об, то это пространство содержит бесконечномерное подпространство, изоморфное сопряженному к некоторому банахову пространству с базисом. Даны некоторые обобщения на несепарабельный случай известного результата Розенталя и Джонсона о насыщенности сепарабельного сопряженного пространства пространствами, изоморфными сепарабельным сопряженным.