2025-02-22T10:19:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis&rows=5
2025-02-22T10:19:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis&rows=5
2025-02-22T10:19:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:19:29-05:00 DEBUG: Deserialized SOLR response
A commutative Bezout PM* domain is an elementary divisor ring
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2015
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-154247 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1542472019-06-16T01:26:53Z A commutative Bezout PM* domain is an elementary divisor ring Zabavsky, B. Gatalevych, A. We prove that any commutative Bezout PM∗ domain is an elementary divisor ring. 2015 Article A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:13F99. http://dspace.nbuv.gov.ua/handle/123456789/154247 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring. |
format |
Article |
author |
Zabavsky, B. Gatalevych, A. |
spellingShingle |
Zabavsky, B. Gatalevych, A. A commutative Bezout PM* domain is an elementary divisor ring Algebra and Discrete Mathematics |
author_facet |
Zabavsky, B. Gatalevych, A. |
author_sort |
Zabavsky, B. |
title |
A commutative Bezout PM* domain is an elementary divisor ring |
title_short |
A commutative Bezout PM* domain is an elementary divisor ring |
title_full |
A commutative Bezout PM* domain is an elementary divisor ring |
title_fullStr |
A commutative Bezout PM* domain is an elementary divisor ring |
title_full_unstemmed |
A commutative Bezout PM* domain is an elementary divisor ring |
title_sort |
commutative bezout pm* domain is an elementary divisor ring |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154247 |
citation_txt |
A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT zabavskyb acommutativebezoutpmdomainisanelementarydivisorring AT gatalevycha acommutativebezoutpmdomainisanelementarydivisorring AT zabavskyb commutativebezoutpmdomainisanelementarydivisorring AT gatalevycha commutativebezoutpmdomainisanelementarydivisorring |
first_indexed |
2023-05-20T17:43:56Z |
last_indexed |
2023-05-20T17:43:56Z |
_version_ |
1796153961449783296 |