2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis&rows=5
2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis&rows=5
2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:26:01-05:00 DEBUG: Deserialized SOLR response
A commutative Bezout PM* domain is an elementary divisor ring
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
Saved in:
Main Authors: | Zabavsky, B., Gatalevych, A. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2015
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis
2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154247%22&qt=morelikethis
2025-02-22T10:26:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:26:01-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
A commutative Bezout PM* domain is an elementary divisor ring
by: B. Zabavsky, et al.
Published: (2015) -
A criterion of elementary divisor domain for distributive domains
by: V. Bokhonko, et al.
Published: (2017) -
A criterion of elementary divisor domain for distributive domains
by: Bokhonko, V., et al.
Published: (2017) -
Principal flat ideals in the ring of matrices over commutative elementary divisors domain
by: H. V. Zelisko
Published: (2012) -
Comaximal factorization in a commutative Bezout ring
by: Zabavsky, B. V., et al.
Published: (2020)