2025-02-23T03:22:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154258%22&qt=morelikethis&rows=5
2025-02-23T03:22:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154258%22&qt=morelikethis&rows=5
2025-02-23T03:22:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:22:22-05:00 DEBUG: Deserialized SOLR response
Ultrafilters on G-spaces
For a discrete group G and a discrete G-space X, we identify the Stone-Cech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colo...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2015
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154258 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-154258 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1542582019-06-16T01:27:15Z Ultrafilters on G-spaces Petrenko, O.V. Protasov, I.V. For a discrete group G and a discrete G-space X, we identify the Stone-Cech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on ω, the T-points, and study interrelations between these ultrafilters and some classical ultrafilters on ω. 2015 Article Ultrafilters on G-spaces / O.V. Petrenko, I.V. Protasov // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 254–269. — Бібліогр.: 28 назв. — англ. 1726-3255 2010 MSC:05D10, 22A15, 54H20 http://dspace.nbuv.gov.ua/handle/123456789/154258 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For a discrete group G and a discrete G-space X, we identify the Stone-Cech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on ω, the T-points, and study interrelations between these ultrafilters and some classical ultrafilters on ω. |
format |
Article |
author |
Petrenko, O.V. Protasov, I.V. |
spellingShingle |
Petrenko, O.V. Protasov, I.V. Ultrafilters on G-spaces Algebra and Discrete Mathematics |
author_facet |
Petrenko, O.V. Protasov, I.V. |
author_sort |
Petrenko, O.V. |
title |
Ultrafilters on G-spaces |
title_short |
Ultrafilters on G-spaces |
title_full |
Ultrafilters on G-spaces |
title_fullStr |
Ultrafilters on G-spaces |
title_full_unstemmed |
Ultrafilters on G-spaces |
title_sort |
ultrafilters on g-spaces |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154258 |
citation_txt |
Ultrafilters on G-spaces / O.V. Petrenko, I.V. Protasov // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 254–269. — Бібліогр.: 28 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT petrenkoov ultrafiltersongspaces AT protasoviv ultrafiltersongspaces |
first_indexed |
2023-05-20T17:43:57Z |
last_indexed |
2023-05-20T17:43:57Z |
_version_ |
1796153945493602304 |