Integrability by quadratures for systems of involutive vector fields

Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough sy...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1991
Автор: Basarab-Horwath, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1991
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154478
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-. dent integrals. These results allow us to identify symmetries with integral invariants in the sense of Poincare and Cartan. A further (new) result gives the equivalence of integrability by quadratures and the existence of solvable structures, these latter being generalizations. of solvable algebras.