Integrability by quadratures for systems of involutive vector fields
Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough sy...
Збережено в:
Дата: | 1991 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1991
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154478 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-. dent integrals. These results allow us to identify symmetries with integral invariants in the sense of Poincare and Cartan. A further (new) result gives the equivalence of integrability by quadratures and the existence of solvable structures, these latter being generalizations. of solvable algebras. |
---|