2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154497%22&qt=morelikethis&rows=5
2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154497%22&qt=morelikethis&rows=5
2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:41:43-05:00 DEBUG: Deserialized SOLR response
On commutative nilalgebras of low dimension
We prove that every commutative non-associative nilalgebra of dimension ≤7, over a field of characteristic zero or sufficiently large is solvable.
Saved in:
Main Author: | Gutierrez Fernandez, J.C. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2010
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154497 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154497%22&qt=morelikethis
2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154497%22&qt=morelikethis
2025-02-22T23:41:43-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:41:43-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
On commutative nilalgebras of low dimension
by: Fernandez, Juan C. Gutierrez
Published: (2018) -
Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
by: Schroers, B.J., et al.
Published: (2014) -
Constructing representations of the logarithmic function in the same class of commutative hypercomplex numerical systems of fourth dimension
by: Kalinovskiy, J. A., et al.
Published: (2016) -
Criteria Conceived Commutative Hypercomplex Number Systems Direct Sum of Low-Dimensional Systems
by: Kalinovsky, J. А.
Published: (2012) -
Computing characteristics of one class of non-commutative hypercomplex number systems of 4-dimension
by: Kalinovsky, Ya. O., et al.
Published: (2014)