A generalization of groups with many almost normal subgroups

A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that |G:Z(G)| is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each non-finit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Russo, F.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154600
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A generalization of groups with many almost normal subgroups / F.G. Russo // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 79–85. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that |G:Z(G)| is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each non-finitely generated subgroup satisfies a property, which is weaker to be almost normal