Camina groups with few conjugacy classes
Let G be a finite group having a proper normal subgroup K such that the conjugacy classes outside K coincide with the cosets of K. The subgroup K turns out to be the derived subgroup of G, so the group G is either abelian or Camina. Hence, we propose to classify Camina groups according to the number...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154601 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Camina groups with few conjugacy classes / L. Cangelmi, A.S. Muktibodh // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 38–47. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154601 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546012019-06-16T01:32:29Z Camina groups with few conjugacy classes Cangelmi, L. Muktibodh, A.S. Let G be a finite group having a proper normal subgroup K such that the conjugacy classes outside K coincide with the cosets of K. The subgroup K turns out to be the derived subgroup of G, so the group G is either abelian or Camina. Hence, we propose to classify Camina groups according to the number of conjugacy classes contained in the derived subgroup. We give the complete characterization of Camina groups when the derived subgroup is made up of two or three conjugacy classes, showing that such groups are all Frobenius or extra-special. 2010 Article Camina groups with few conjugacy classes / L. Cangelmi, A.S. Muktibodh // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 38–47. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20D25; 20E45. http://dspace.nbuv.gov.ua/handle/123456789/154601 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a finite group having a proper normal subgroup K such that the conjugacy classes outside K coincide with the cosets of K. The subgroup K turns out to be the derived subgroup of G, so the group G is either abelian or Camina. Hence, we propose to classify Camina groups according to the number of conjugacy classes contained in the derived subgroup. We give the complete characterization of Camina groups when the derived subgroup is made up of two or three conjugacy classes, showing that such groups are all Frobenius or extra-special. |
format |
Article |
author |
Cangelmi, L. Muktibodh, A.S. |
spellingShingle |
Cangelmi, L. Muktibodh, A.S. Camina groups with few conjugacy classes Algebra and Discrete Mathematics |
author_facet |
Cangelmi, L. Muktibodh, A.S. |
author_sort |
Cangelmi, L. |
title |
Camina groups with few conjugacy classes |
title_short |
Camina groups with few conjugacy classes |
title_full |
Camina groups with few conjugacy classes |
title_fullStr |
Camina groups with few conjugacy classes |
title_full_unstemmed |
Camina groups with few conjugacy classes |
title_sort |
camina groups with few conjugacy classes |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154601 |
citation_txt |
Camina groups with few conjugacy classes / L. Cangelmi, A.S. Muktibodh // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 38–47. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT cangelmil caminagroupswithfewconjugacyclasses AT muktibodhas caminagroupswithfewconjugacyclasses |
first_indexed |
2023-05-20T17:44:57Z |
last_indexed |
2023-05-20T17:44:57Z |
_version_ |
1796153999448080384 |