Some combinatorial problems in the theory of symmetric inverse semigroups

Let Xn={1,2,⋯,n} and let α:Domα⊆Xn→Imα⊆Xn be a (partial) transformation on Xn. On a partial one-one mapping of Xn the following parameters are defined: the height of α is h(α)=|Imα|, the right [left] waist of α is w+(α)=max(Imα)[w−(α)=min(Imα)], and fix of α is denoted by f(α), and defined by f(α)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Umar, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154602
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some combinatorial problems in the theory of symmetric inverse semigroups / A. Umar // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 113–124. — Бібліогр.: 32 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let Xn={1,2,⋯,n} and let α:Domα⊆Xn→Imα⊆Xn be a (partial) transformation on Xn. On a partial one-one mapping of Xn the following parameters are defined: the height of α is h(α)=|Imα|, the right [left] waist of α is w+(α)=max(Imα)[w−(α)=min(Imα)], and fix of α is denoted by f(α), and defined by f(α)=|{x∈Xn:xα=x}|. The cardinalities of some equivalences defined by equalities of these parameters on In, the semigroup of partial one-one mappings of Xn, and some of its notable subsemigroups that have been computed are gathered together and the open problems highlighted.