Preradicals and characteristic submodules: connections and operations

For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Kashu, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154603
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Preradicals and characteristic submodules: connections and operations / A.I. Kashu // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 59–75. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations in the lattice Lch(RM) are defined. Some properties of these operations are shown and their relations with the lattice operations in Lch(RM) are investigated. As application the case RM=RR is mentioned, when Lch(RR) is the lattice of two-sided ideals of ring R.