Preradicals and characteristic submodules: connections and operations
For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154603 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Preradicals and characteristic submodules: connections and operations / A.I. Kashu // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 59–75. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations in the lattice Lch(RM) are defined. Some properties of these operations are shown and their relations with the lattice operations in Lch(RM) are investigated. As application the case RM=RR is mentioned, when Lch(RR) is the lattice of two-sided ideals of ring R. |
---|