Preradicals and characteristic submodules: connections and operations

For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Kashu, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154603
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Preradicals and characteristic submodules: connections and operations / A.I. Kashu // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 59–75. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154603
record_format dspace
spelling irk-123456789-1546032019-06-16T01:32:30Z Preradicals and characteristic submodules: connections and operations Kashu, A.I. For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations in the lattice Lch(RM) are defined. Some properties of these operations are shown and their relations with the lattice operations in Lch(RM) are investigated. As application the case RM=RR is mentioned, when Lch(RR) is the lattice of two-sided ideals of ring R. 2010 Article Preradicals and characteristic submodules: connections and operations / A.I. Kashu // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 59–75. — Бібліогр.: 8 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/154603 of2000 Mathematics Subject Classification:16D90, 16S90, 06B23. en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For an arbitrary module M∈R-Mod the relation between the lattice Lch(RM) of characteristic (fully invariant) submodules of M and big lattice R-pr of preradicals of R-Mod is studied. Some isomorphic images of Lch(RM) in R-pr are constructed. Using the product and coproduct in R-pr four operations in the lattice Lch(RM) are defined. Some properties of these operations are shown and their relations with the lattice operations in Lch(RM) are investigated. As application the case RM=RR is mentioned, when Lch(RR) is the lattice of two-sided ideals of ring R.
format Article
author Kashu, A.I.
spellingShingle Kashu, A.I.
Preradicals and characteristic submodules: connections and operations
Algebra and Discrete Mathematics
author_facet Kashu, A.I.
author_sort Kashu, A.I.
title Preradicals and characteristic submodules: connections and operations
title_short Preradicals and characteristic submodules: connections and operations
title_full Preradicals and characteristic submodules: connections and operations
title_fullStr Preradicals and characteristic submodules: connections and operations
title_full_unstemmed Preradicals and characteristic submodules: connections and operations
title_sort preradicals and characteristic submodules: connections and operations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/154603
citation_txt Preradicals and characteristic submodules: connections and operations / A.I. Kashu // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 59–75. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kashuai preradicalsandcharacteristicsubmodulesconnectionsandoperations
first_indexed 2023-05-20T17:44:58Z
last_indexed 2023-05-20T17:44:58Z
_version_ 1796153999658844160