On Galois groups of prime degree polynomials with complex roots

Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Oz Ben-Shimol
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154610
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154610
record_format dspace
spelling irk-123456789-1546102019-06-16T01:28:12Z On Galois groups of prime degree polynomials with complex roots Oz Ben-Shimol Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska. If such a polynomial f is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree p over Q having complex roots. 2009 Article On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20B35; 12F12. http://dspace.nbuv.gov.ua/handle/123456789/154610 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska. If such a polynomial f is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree p over Q having complex roots.
format Article
author Oz Ben-Shimol
spellingShingle Oz Ben-Shimol
On Galois groups of prime degree polynomials with complex roots
Algebra and Discrete Mathematics
author_facet Oz Ben-Shimol
author_sort Oz Ben-Shimol
title On Galois groups of prime degree polynomials with complex roots
title_short On Galois groups of prime degree polynomials with complex roots
title_full On Galois groups of prime degree polynomials with complex roots
title_fullStr On Galois groups of prime degree polynomials with complex roots
title_full_unstemmed On Galois groups of prime degree polynomials with complex roots
title_sort on galois groups of prime degree polynomials with complex roots
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/154610
citation_txt On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ozbenshimol ongaloisgroupsofprimedegreepolynomialswithcomplexroots
first_indexed 2023-05-20T17:44:27Z
last_indexed 2023-05-20T17:44:27Z
_version_ 1796153980772941824