A variant of the primitive element theorem for separable extensions of a commutative ring

In this article we show that any strongly separable extension of a commutative ring R can be embedded into another one having primitive element whenever every boolean localization of R modulo its Jacobson radical is von Neumann regular and locally uniform.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Bagio, D., Paques, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154618
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A variant of the primitive element theorem for separable extensions of a commutative ring / D. Bagio, A. Paques // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 20–26. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154618
record_format dspace
spelling irk-123456789-1546182019-06-16T01:27:50Z A variant of the primitive element theorem for separable extensions of a commutative ring Bagio, D. Paques, A. In this article we show that any strongly separable extension of a commutative ring R can be embedded into another one having primitive element whenever every boolean localization of R modulo its Jacobson radical is von Neumann regular and locally uniform. 2009 Article A variant of the primitive element theorem for separable extensions of a commutative ring / D. Bagio, A. Paques // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 20–26. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:13B05, 12F10 http://dspace.nbuv.gov.ua/handle/123456789/154618 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this article we show that any strongly separable extension of a commutative ring R can be embedded into another one having primitive element whenever every boolean localization of R modulo its Jacobson radical is von Neumann regular and locally uniform.
format Article
author Bagio, D.
Paques, A.
spellingShingle Bagio, D.
Paques, A.
A variant of the primitive element theorem for separable extensions of a commutative ring
Algebra and Discrete Mathematics
author_facet Bagio, D.
Paques, A.
author_sort Bagio, D.
title A variant of the primitive element theorem for separable extensions of a commutative ring
title_short A variant of the primitive element theorem for separable extensions of a commutative ring
title_full A variant of the primitive element theorem for separable extensions of a commutative ring
title_fullStr A variant of the primitive element theorem for separable extensions of a commutative ring
title_full_unstemmed A variant of the primitive element theorem for separable extensions of a commutative ring
title_sort variant of the primitive element theorem for separable extensions of a commutative ring
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/154618
citation_txt A variant of the primitive element theorem for separable extensions of a commutative ring / D. Bagio, A. Paques // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 20–26. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bagiod avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesa avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT bagiod variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesa variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
first_indexed 2023-05-20T17:44:43Z
last_indexed 2023-05-20T17:44:43Z
_version_ 1796153990109462528