Projectivity and flatness over the graded ring of semi-coinvariants

Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Guedenon, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154619
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Projectivity and flatness over the graded ring of semi-coinvariants / T. Guedenon // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 43–56. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring A⊗C, we prove similar results for the graded ring of conormalizing elements of A.