Projectivity and flatness over the graded ring of semi-coinvariants
Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative a...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154619 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Projectivity and flatness over the graded ring of semi-coinvariants / T. Guedenon // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 43–56. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154619 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546192019-06-16T01:31:54Z Projectivity and flatness over the graded ring of semi-coinvariants Guedenon, T. Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring A⊗C, we prove similar results for the graded ring of conormalizing elements of A. 2010 Article Projectivity and flatness over the graded ring of semi-coinvariants / T. Guedenon // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 43–56. — Бібліогр.: 13 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/154619 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring A⊗C, we prove similar results for the graded ring of conormalizing elements of A. |
format |
Article |
author |
Guedenon, T. |
spellingShingle |
Guedenon, T. Projectivity and flatness over the graded ring of semi-coinvariants Algebra and Discrete Mathematics |
author_facet |
Guedenon, T. |
author_sort |
Guedenon, T. |
title |
Projectivity and flatness over the graded ring of semi-coinvariants |
title_short |
Projectivity and flatness over the graded ring of semi-coinvariants |
title_full |
Projectivity and flatness over the graded ring of semi-coinvariants |
title_fullStr |
Projectivity and flatness over the graded ring of semi-coinvariants |
title_full_unstemmed |
Projectivity and flatness over the graded ring of semi-coinvariants |
title_sort |
projectivity and flatness over the graded ring of semi-coinvariants |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154619 |
citation_txt |
Projectivity and flatness over the graded ring of semi-coinvariants / T. Guedenon // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 43–56. — Бібліогр.: 13 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT guedenont projectivityandflatnessoverthegradedringofsemicoinvariants |
first_indexed |
2023-05-20T17:44:59Z |
last_indexed |
2023-05-20T17:44:59Z |
_version_ |
1796154000185229312 |