A Morita context related to finite groups acting partially on a ring
In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG....
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154630 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154630 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546302019-06-16T01:29:30Z A Morita context related to finite groups acting partially on a ring Guzman, J.A. Lazzarin, J. In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG. 2009 Article A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S35, 16R30, 13C60, 16N60. http://dspace.nbuv.gov.ua/handle/123456789/154630 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG. |
format |
Article |
author |
Guzman, J.A. Lazzarin, J. |
spellingShingle |
Guzman, J.A. Lazzarin, J. A Morita context related to finite groups acting partially on a ring Algebra and Discrete Mathematics |
author_facet |
Guzman, J.A. Lazzarin, J. |
author_sort |
Guzman, J.A. |
title |
A Morita context related to finite groups acting partially on a ring |
title_short |
A Morita context related to finite groups acting partially on a ring |
title_full |
A Morita context related to finite groups acting partially on a ring |
title_fullStr |
A Morita context related to finite groups acting partially on a ring |
title_full_unstemmed |
A Morita context related to finite groups acting partially on a ring |
title_sort |
morita context related to finite groups acting partially on a ring |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154630 |
citation_txt |
A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT guzmanja amoritacontextrelatedtofinitegroupsactingpartiallyonaring AT lazzarinj amoritacontextrelatedtofinitegroupsactingpartiallyonaring AT guzmanja moritacontextrelatedtofinitegroupsactingpartiallyonaring AT lazzarinj moritacontextrelatedtofinitegroupsactingpartiallyonaring |
first_indexed |
2023-05-20T17:44:43Z |
last_indexed |
2023-05-20T17:44:43Z |
_version_ |
1796153990528892928 |