2025-02-21T09:32:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154630%22&qt=morelikethis&rows=5
2025-02-21T09:32:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154630%22&qt=morelikethis&rows=5
2025-02-21T09:32:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-21T09:32:33-05:00 DEBUG: Deserialized SOLR response

A Morita context related to finite groups acting partially on a ring

In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG....

Full description

Saved in:
Bibliographic Details
Main Authors: Guzman, J.A., Lazzarin, J.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2009
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/154630
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-154630
record_format dspace
spelling irk-123456789-1546302019-06-16T01:29:30Z A Morita context related to finite groups acting partially on a ring Guzman, J.A. Lazzarin, J. In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG. 2009 Article A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S35, 16R30, 13C60, 16N60. http://dspace.nbuv.gov.ua/handle/123456789/154630 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG.
format Article
author Guzman, J.A.
Lazzarin, J.
spellingShingle Guzman, J.A.
Lazzarin, J.
A Morita context related to finite groups acting partially on a ring
Algebra and Discrete Mathematics
author_facet Guzman, J.A.
Lazzarin, J.
author_sort Guzman, J.A.
title A Morita context related to finite groups acting partially on a ring
title_short A Morita context related to finite groups acting partially on a ring
title_full A Morita context related to finite groups acting partially on a ring
title_fullStr A Morita context related to finite groups acting partially on a ring
title_full_unstemmed A Morita context related to finite groups acting partially on a ring
title_sort morita context related to finite groups acting partially on a ring
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/154630
citation_txt A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT guzmanja amoritacontextrelatedtofinitegroupsactingpartiallyonaring
AT lazzarinj amoritacontextrelatedtofinitegroupsactingpartiallyonaring
AT guzmanja moritacontextrelatedtofinitegroupsactingpartiallyonaring
AT lazzarinj moritacontextrelatedtofinitegroupsactingpartiallyonaring
first_indexed 2023-05-20T17:44:43Z
last_indexed 2023-05-20T17:44:43Z
_version_ 1796153990528892928