Groups with many generalized FC-subgroup
Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154643 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154643 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546432019-06-16T01:31:06Z Groups with many generalized FC-subgroup Russo, A. Vincenzi, G. Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with class at most m belongs to FCm. The class of FCⁿ-groups was introduced in [6]. In this article the structure of groups with finitely many normalizers of non-FCⁿ-subgroups (respectively, the structure of groups whose subgroups either are subnormal with bounded defect or have the property FCⁿ) is investigated. 2009 Article Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F24. http://dspace.nbuv.gov.ua/handle/123456789/154643 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with class at most m belongs to FCm. The class of FCⁿ-groups was introduced in [6]. In this article the structure of groups with finitely many normalizers of non-FCⁿ-subgroups (respectively, the structure of groups whose subgroups either are subnormal with bounded defect or have the property FCⁿ) is investigated. |
format |
Article |
author |
Russo, A. Vincenzi, G. |
spellingShingle |
Russo, A. Vincenzi, G. Groups with many generalized FC-subgroup Algebra and Discrete Mathematics |
author_facet |
Russo, A. Vincenzi, G. |
author_sort |
Russo, A. |
title |
Groups with many generalized FC-subgroup |
title_short |
Groups with many generalized FC-subgroup |
title_full |
Groups with many generalized FC-subgroup |
title_fullStr |
Groups with many generalized FC-subgroup |
title_full_unstemmed |
Groups with many generalized FC-subgroup |
title_sort |
groups with many generalized fc-subgroup |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154643 |
citation_txt |
Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT russoa groupswithmanygeneralizedfcsubgroup AT vincenzig groupswithmanygeneralizedfcsubgroup |
first_indexed |
2023-05-20T17:44:44Z |
last_indexed |
2023-05-20T17:44:44Z |
_version_ |
1796153991053180928 |