Green’s relations on the seminearring of full hypersubstitutions of type (n)
Hypersubstitutions are mappings which are used to define hyperidentities and solid varieties. In this paper we will show that the set of all hypersubstitutions of a given type forms a seminearring. We will give a full characterization of Green’s relation R on a sub-seminearring of the seminearri...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2003
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154666 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Green’s relations on the seminearring of full hypersubstitutions of type (n) / Th. Changphas, K. Denecke // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 6–19. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154666 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546662019-06-16T01:31:54Z Green’s relations on the seminearring of full hypersubstitutions of type (n) Changphas, Th. Denecke, K. Hypersubstitutions are mappings which are used to define hyperidentities and solid varieties. In this paper we will show that the set of all hypersubstitutions of a given type forms a seminearring. We will give a full characterization of Green’s relation R on a sub-seminearring of the seminearring Hyp(n) of all hypersubstitutions of type (n). 2003 Article Green’s relations on the seminearring of full hypersubstitutions of type (n) / Th. Changphas, K. Denecke // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 6–19. — Бібліогр.: 9 назв. — англ. 1726-3255 2001 Mathematics Subject Classification: 08B15. http://dspace.nbuv.gov.ua/handle/123456789/154666 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Hypersubstitutions are mappings which are used
to define hyperidentities and solid varieties. In this paper we will
show that the set of all hypersubstitutions of a given type forms
a seminearring. We will give a full characterization of Green’s
relation R on a sub-seminearring of the seminearring Hyp(n) of
all hypersubstitutions of type (n). |
format |
Article |
author |
Changphas, Th. Denecke, K. |
spellingShingle |
Changphas, Th. Denecke, K. Green’s relations on the seminearring of full hypersubstitutions of type (n) Algebra and Discrete Mathematics |
author_facet |
Changphas, Th. Denecke, K. |
author_sort |
Changphas, Th. |
title |
Green’s relations on the seminearring of full hypersubstitutions of type (n) |
title_short |
Green’s relations on the seminearring of full hypersubstitutions of type (n) |
title_full |
Green’s relations on the seminearring of full hypersubstitutions of type (n) |
title_fullStr |
Green’s relations on the seminearring of full hypersubstitutions of type (n) |
title_full_unstemmed |
Green’s relations on the seminearring of full hypersubstitutions of type (n) |
title_sort |
green’s relations on the seminearring of full hypersubstitutions of type (n) |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2003 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154666 |
citation_txt |
Green’s relations on the seminearring of full hypersubstitutions of type (n) / Th. Changphas, K. Denecke // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 6–19. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT changphasth greensrelationsontheseminearringoffullhypersubstitutionsoftypen AT deneckek greensrelationsontheseminearringoffullhypersubstitutionsoftypen |
first_indexed |
2023-05-20T17:45:12Z |
last_indexed |
2023-05-20T17:45:12Z |
_version_ |
1796154008986976256 |