Multi-algebras from the viewpoint of algebraic logic

Where U is a structure for a first-order language L ≈ with equality ≈, a standard construction associates with every formula f of L ≈ the set kfk of those assignments which fulfill f in U. These sets make up a (cylindric like) set algebra Cs(U) that is a homomorphic image of the algebra of for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Cırulis, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154670
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-algebras from the viewpoint of algebraic logic / J. Cırulis // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154670
record_format dspace
spelling irk-123456789-1546702019-06-16T01:32:01Z Multi-algebras from the viewpoint of algebraic logic Cırulis, J. Where U is a structure for a first-order language L ≈ with equality ≈, a standard construction associates with every formula f of L ≈ the set kfk of those assignments which fulfill f in U. These sets make up a (cylindric like) set algebra Cs(U) that is a homomorphic image of the algebra of formulas. If L ≈ does not have predicate symbols distinct from ≈, i.e. U is an ordinary algebra, then Cs(U) is generated by its elements ks ≈ tk; thus, the function (s, t) 7→ ks ≈ tk comprises all information on Cs(U). In the paper, we consider the analogues of such functions for multi-algebras. Instead of ≈, the relation ε of singular inclusion is accepted as the basic one (sεt is read as ‘s has a single value, which is also a value of t’). Then every multi-algebra U can be completely restored from the function (s, t) 7→ ks ε tk. The class of such functions is given an axiomatic description. 2003 Article Multi-algebras from the viewpoint of algebraic logic / J. Cırulis // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ. 1726-3255 2001 Mathematics Subject Classification: 08A99; 03G15, 08A62. http://dspace.nbuv.gov.ua/handle/123456789/154670 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Where U is a structure for a first-order language L ≈ with equality ≈, a standard construction associates with every formula f of L ≈ the set kfk of those assignments which fulfill f in U. These sets make up a (cylindric like) set algebra Cs(U) that is a homomorphic image of the algebra of formulas. If L ≈ does not have predicate symbols distinct from ≈, i.e. U is an ordinary algebra, then Cs(U) is generated by its elements ks ≈ tk; thus, the function (s, t) 7→ ks ≈ tk comprises all information on Cs(U). In the paper, we consider the analogues of such functions for multi-algebras. Instead of ≈, the relation ε of singular inclusion is accepted as the basic one (sεt is read as ‘s has a single value, which is also a value of t’). Then every multi-algebra U can be completely restored from the function (s, t) 7→ ks ε tk. The class of such functions is given an axiomatic description.
format Article
author Cırulis, J.
spellingShingle Cırulis, J.
Multi-algebras from the viewpoint of algebraic logic
Algebra and Discrete Mathematics
author_facet Cırulis, J.
author_sort Cırulis, J.
title Multi-algebras from the viewpoint of algebraic logic
title_short Multi-algebras from the viewpoint of algebraic logic
title_full Multi-algebras from the viewpoint of algebraic logic
title_fullStr Multi-algebras from the viewpoint of algebraic logic
title_full_unstemmed Multi-algebras from the viewpoint of algebraic logic
title_sort multi-algebras from the viewpoint of algebraic logic
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/154670
citation_txt Multi-algebras from the viewpoint of algebraic logic / J. Cırulis // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT cırulisj multialgebrasfromtheviewpointofalgebraiclogic
first_indexed 2023-05-20T17:45:12Z
last_indexed 2023-05-20T17:45:12Z
_version_ 1796154009091833856