Крайові задачі для гіперболічних рівнянь зі сталими коефіцієнтами
By using a metric approach, the problem of correctness of a boundary-value problem is studied for a hyperbolic equation of order n (n ≥ 2) with constant coefficients defined in a tube domain. Existence and uniqueness conditions arc formulated in terms of number theory. We prove a metric theorem on l...
Збережено в:
Дата: | 1994 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
1994
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154733 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Крайові задачі для гіперболічних рівнянь зі сталими коефіцієнтами / І.О. Бобик, Б.Й. Пташник // Український математичний журнал. — 1994. — Т. 46, № 7. — С. 795–802. — Бібліогр.: 8 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | By using a metric approach, the problem of correctness of a boundary-value problem is studied for a hyperbolic equation of order n (n ≥ 2) with constant coefficients defined in a tube domain. Existence and uniqueness conditions arc formulated in terms of number theory. We prove a metric theorem on lower estimates for small denominators that appear in solutions of the problem. |
---|