A tabu search approach to the jump number problem

We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Krysztowiak, P., Sysło, M.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154747
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154747
record_format dspace
spelling irk-123456789-1547472019-06-16T01:32:41Z A tabu search approach to the jump number problem Krysztowiak, P. Sysło, M.M. We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders. 2015 Article A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. 1726-3255 2010 MSC:90C27, 90C59. http://dspace.nbuv.gov.ua/handle/123456789/154747 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders.
format Article
author Krysztowiak, P.
Sysło, M.M.
spellingShingle Krysztowiak, P.
Sysło, M.M.
A tabu search approach to the jump number problem
Algebra and Discrete Mathematics
author_facet Krysztowiak, P.
Sysło, M.M.
author_sort Krysztowiak, P.
title A tabu search approach to the jump number problem
title_short A tabu search approach to the jump number problem
title_full A tabu search approach to the jump number problem
title_fullStr A tabu search approach to the jump number problem
title_full_unstemmed A tabu search approach to the jump number problem
title_sort tabu search approach to the jump number problem
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/154747
citation_txt A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT krysztowiakp atabusearchapproachtothejumpnumberproblem
AT sysłomm atabusearchapproachtothejumpnumberproblem
AT krysztowiakp tabusearchapproachtothejumpnumberproblem
AT sysłomm tabusearchapproachtothejumpnumberproblem
first_indexed 2023-05-20T17:45:17Z
last_indexed 2023-05-20T17:45:17Z
_version_ 1796154017975369728