A tabu search approach to the jump number problem
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154747 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154747 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1547472019-06-16T01:32:41Z A tabu search approach to the jump number problem Krysztowiak, P. Sysło, M.M. We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders. 2015 Article A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. 1726-3255 2010 MSC:90C27, 90C59. http://dspace.nbuv.gov.ua/handle/123456789/154747 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11]
a lower bound for the jump number of two-dimensional posets.
Moreover, by other techniques we prove
an approximation ratio of n/ log(log(n)) for 2D orders. |
format |
Article |
author |
Krysztowiak, P. Sysło, M.M. |
spellingShingle |
Krysztowiak, P. Sysło, M.M. A tabu search approach to the jump number problem Algebra and Discrete Mathematics |
author_facet |
Krysztowiak, P. Sysło, M.M. |
author_sort |
Krysztowiak, P. |
title |
A tabu search approach to the jump number problem |
title_short |
A tabu search approach to the jump number problem |
title_full |
A tabu search approach to the jump number problem |
title_fullStr |
A tabu search approach to the jump number problem |
title_full_unstemmed |
A tabu search approach to the jump number problem |
title_sort |
tabu search approach to the jump number problem |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154747 |
citation_txt |
A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT krysztowiakp atabusearchapproachtothejumpnumberproblem AT sysłomm atabusearchapproachtothejumpnumberproblem AT krysztowiakp tabusearchapproachtothejumpnumberproblem AT sysłomm tabusearchapproachtothejumpnumberproblem |
first_indexed |
2023-05-20T17:45:17Z |
last_indexed |
2023-05-20T17:45:17Z |
_version_ |
1796154017975369728 |