On the units of integral group ring of Cn×C₆

There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermor...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Küsmüş, Ö.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154754
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154754
record_format dspace
spelling irk-123456789-1547542019-06-16T01:31:44Z On the units of integral group ring of Cn×C₆ Küsmüş, Ö. There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn). 2015 Article On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:16U60, 16S34. http://dspace.nbuv.gov.ua/handle/123456789/154754 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn).
format Article
author Küsmüş, Ö.
spellingShingle Küsmüş, Ö.
On the units of integral group ring of Cn×C₆
Algebra and Discrete Mathematics
author_facet Küsmüş, Ö.
author_sort Küsmüş, Ö.
title On the units of integral group ring of Cn×C₆
title_short On the units of integral group ring of Cn×C₆
title_full On the units of integral group ring of Cn×C₆
title_fullStr On the units of integral group ring of Cn×C₆
title_full_unstemmed On the units of integral group ring of Cn×C₆
title_sort on the units of integral group ring of cn×c₆
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/154754
citation_txt On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kusmuso ontheunitsofintegralgroupringofcnc6
first_indexed 2023-05-20T17:45:18Z
last_indexed 2023-05-20T17:45:18Z
_version_ 1796154018502803456