On the units of integral group ring of Cn×C₆
There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermor...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154754 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154754 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1547542019-06-16T01:31:44Z On the units of integral group ring of Cn×C₆ Küsmüş, Ö. There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn). 2015 Article On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:16U60, 16S34. http://dspace.nbuv.gov.ua/handle/123456789/154754 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of Cn×C₆ where Cn=⟨a:aⁿ=1⟩ and C₆=⟨x:x⁶=1⟩. We show that U₁(Z[Cn×C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn). |
format |
Article |
author |
Küsmüş, Ö. |
spellingShingle |
Küsmüş, Ö. On the units of integral group ring of Cn×C₆ Algebra and Discrete Mathematics |
author_facet |
Küsmüş, Ö. |
author_sort |
Küsmüş, Ö. |
title |
On the units of integral group ring of Cn×C₆ |
title_short |
On the units of integral group ring of Cn×C₆ |
title_full |
On the units of integral group ring of Cn×C₆ |
title_fullStr |
On the units of integral group ring of Cn×C₆ |
title_full_unstemmed |
On the units of integral group ring of Cn×C₆ |
title_sort |
on the units of integral group ring of cn×c₆ |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154754 |
citation_txt |
On the units of integral group ring of Cn×C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 142-151. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kusmuso ontheunitsofintegralgroupringofcnc6 |
first_indexed |
2023-05-20T17:45:18Z |
last_indexed |
2023-05-20T17:45:18Z |
_version_ |
1796154018502803456 |