2025-02-22T17:02:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154755%22&qt=morelikethis&rows=5
2025-02-22T17:02:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154755%22&qt=morelikethis&rows=5
2025-02-22T17:02:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:02:22-05:00 DEBUG: Deserialized SOLR response

On characteristic properties of semigroups

Let K be a class of semigroups and P be a set of general properties of semigroups. We call a subset Q of P cha\-racteristic for a semigroup S∈ K if, up to isomorphism and anti-isomorphism, S is the only semigroup in K, which satisfies all the properties from Q. The set of properties P is call...

Full description

Saved in:
Bibliographic Details
Main Authors: Bondarenko, V.M., Zaciha, Y.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2015
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/154755
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-154755
record_format dspace
spelling irk-123456789-1547552019-06-16T01:31:20Z On characteristic properties of semigroups Bondarenko, V.M. Zaciha, Y.V. Let K be a class of semigroups and P be a set of general properties of semigroups. We call a subset Q of P cha\-racteristic for a semigroup S∈ K if, up to isomorphism and anti-isomorphism, S is the only semigroup in K, which satisfies all the properties from Q. The set of properties P is called char-complete for K if for any S∈ K the set of all properties P∈ P, which hold for the semigroup S, is characteristic for S. We indicate a 7-element set of properties of semigroups which is a minimal char-complete setfor the class of semigroups of order 3. 2015 Article On characteristic properties of semigroups / V.M. Bondarenko, Y.V. Zaciha // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 32-39. — Бібліогр.: 1 назв. — англ. 1726-3255 2010 MSC:20M http://dspace.nbuv.gov.ua/handle/123456789/154755 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let K be a class of semigroups and P be a set of general properties of semigroups. We call a subset Q of P cha\-racteristic for a semigroup S∈ K if, up to isomorphism and anti-isomorphism, S is the only semigroup in K, which satisfies all the properties from Q. The set of properties P is called char-complete for K if for any S∈ K the set of all properties P∈ P, which hold for the semigroup S, is characteristic for S. We indicate a 7-element set of properties of semigroups which is a minimal char-complete setfor the class of semigroups of order 3.
format Article
author Bondarenko, V.M.
Zaciha, Y.V.
spellingShingle Bondarenko, V.M.
Zaciha, Y.V.
On characteristic properties of semigroups
Algebra and Discrete Mathematics
author_facet Bondarenko, V.M.
Zaciha, Y.V.
author_sort Bondarenko, V.M.
title On characteristic properties of semigroups
title_short On characteristic properties of semigroups
title_full On characteristic properties of semigroups
title_fullStr On characteristic properties of semigroups
title_full_unstemmed On characteristic properties of semigroups
title_sort on characteristic properties of semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/154755
citation_txt On characteristic properties of semigroups / V.M. Bondarenko, Y.V. Zaciha // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 32-39. — Бібліогр.: 1 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bondarenkovm oncharacteristicpropertiesofsemigroups
AT zacihayv oncharacteristicpropertiesofsemigroups
first_indexed 2023-05-20T17:45:18Z
last_indexed 2023-05-20T17:45:18Z
_version_ 1796154018607661056