Universal property of skew PBW extensions
In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examp...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154757 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras. |
---|