Universal property of skew PBW extensions

In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Acosta, J,.P., Lezama, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154757
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.