Universal property of skew PBW extensions

In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Acosta, J,.P., Lezama, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154757
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154757
record_format dspace
spelling irk-123456789-1547572019-06-16T01:29:07Z Universal property of skew PBW extensions Acosta, J,.P. Lezama, O. In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras. 2015 Article Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:Primary: 16S10, 16S80; Secondary: 16S30, 16S36. http://dspace.nbuv.gov.ua/handle/123456789/154757 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.
format Article
author Acosta, J,.P.
Lezama, O.
spellingShingle Acosta, J,.P.
Lezama, O.
Universal property of skew PBW extensions
Algebra and Discrete Mathematics
author_facet Acosta, J,.P.
Lezama, O.
author_sort Acosta, J,.P.
title Universal property of skew PBW extensions
title_short Universal property of skew PBW extensions
title_full Universal property of skew PBW extensions
title_fullStr Universal property of skew PBW extensions
title_full_unstemmed Universal property of skew PBW extensions
title_sort universal property of skew pbw extensions
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/154757
citation_txt Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT acostajp universalpropertyofskewpbwextensions
AT lezamao universalpropertyofskewpbwextensions
first_indexed 2023-05-20T17:44:13Z
last_indexed 2023-05-20T17:44:13Z
_version_ 1796153972003700736