Derivations and relation modules for inverse semigroups

We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentati...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Gilbert, N.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154764
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one.