Derivations and relation modules for inverse semigroups

We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentati...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Gilbert, N.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154764
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154764
record_format dspace
spelling irk-123456789-1547642019-06-16T01:32:11Z Derivations and relation modules for inverse semigroups Gilbert, N.D. We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one. 2011 Article Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20M18,20M50,18G20. http://dspace.nbuv.gov.ua/handle/123456789/154764 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one.
format Article
author Gilbert, N.D.
spellingShingle Gilbert, N.D.
Derivations and relation modules for inverse semigroups
Algebra and Discrete Mathematics
author_facet Gilbert, N.D.
author_sort Gilbert, N.D.
title Derivations and relation modules for inverse semigroups
title_short Derivations and relation modules for inverse semigroups
title_full Derivations and relation modules for inverse semigroups
title_fullStr Derivations and relation modules for inverse semigroups
title_full_unstemmed Derivations and relation modules for inverse semigroups
title_sort derivations and relation modules for inverse semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154764
citation_txt Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gilbertnd derivationsandrelationmodulesforinversesemigroups
first_indexed 2023-05-20T17:45:19Z
last_indexed 2023-05-20T17:45:19Z
_version_ 1796154011208908800