Free field realizations of certain modules for affine Lie algebra slˆ(n,C)
For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper exten...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154768 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154768 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1547682019-06-17T01:30:41Z Free field realizations of certain modules for affine Lie algebra slˆ(n,C) Martins, R.A. For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1]. 2011 Article Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:17B67, 81R10 http://dspace.nbuv.gov.ua/handle/123456789/154768 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1]. |
format |
Article |
author |
Martins, R.A. |
spellingShingle |
Martins, R.A. Free field realizations of certain modules for affine Lie algebra slˆ(n,C) Algebra and Discrete Mathematics |
author_facet |
Martins, R.A. |
author_sort |
Martins, R.A. |
title |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
title_short |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
title_full |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
title_fullStr |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
title_full_unstemmed |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
title_sort |
free field realizations of certain modules for affine lie algebra slˆ(n,c) |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154768 |
citation_txt |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT martinsra freefieldrealizationsofcertainmodulesforaffineliealgebraslˆnc |
first_indexed |
2023-05-20T17:45:20Z |
last_indexed |
2023-05-20T17:45:20Z |
_version_ |
1796154019028140032 |