Modules whose maximal submodules have τ-supplements
Let R be a ring and τ be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have τ-supplements. We give some characterizations of these modules in terms their certain submodules, so called τ-local submodules. For some certain preradicals τ,...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154772 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modules whose maximal submodules have τ-supplements / E. Buyukasık // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 1–9. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154772 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1547722019-06-16T01:31:09Z Modules whose maximal submodules have τ-supplements Buyukasık, E. Let R be a ring and τ be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have τ-supplements. We give some characterizations of these modules in terms their certain submodules, so called τ-local submodules. For some certain preradicals τ, i.e. τ=δ and idempotent τ, we prove that every maximal submodule of M has a τ-supplement if and only if every cofinite submodule of M has a τ-supplement. For a radical τ on R-Mod, we prove that, for every R-module every submodule is a τ-supplement if and only if R/τ(R) is semisimple and τ is hereditary. 2010 Article Modules whose maximal submodules have τ-supplements / E. Buyukasık // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 1–9. — Бібліогр.: 8 назв. — англ. 2000 Mathematics Subject Classification:16D10, 16N80 http://dspace.nbuv.gov.ua/handle/123456789/154772 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a ring and τ be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have τ-supplements. We give some characterizations of these modules in terms their certain submodules, so called τ-local submodules. For some certain preradicals τ, i.e. τ=δ and idempotent τ, we prove that every maximal submodule of M has a τ-supplement if and only if every cofinite submodule of M has a τ-supplement. For a radical τ on R-Mod, we prove that, for every R-module every submodule is a τ-supplement if and only if R/τ(R) is semisimple and τ is hereditary. |
format |
Article |
author |
Buyukasık, E. |
spellingShingle |
Buyukasık, E. Modules whose maximal submodules have τ-supplements Algebra and Discrete Mathematics |
author_facet |
Buyukasık, E. |
author_sort |
Buyukasık, E. |
title |
Modules whose maximal submodules have τ-supplements |
title_short |
Modules whose maximal submodules have τ-supplements |
title_full |
Modules whose maximal submodules have τ-supplements |
title_fullStr |
Modules whose maximal submodules have τ-supplements |
title_full_unstemmed |
Modules whose maximal submodules have τ-supplements |
title_sort |
modules whose maximal submodules have τ-supplements |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154772 |
citation_txt |
Modules whose maximal submodules have τ-supplements / E. Buyukasık // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 1–9. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT buyukasıke moduleswhosemaximalsubmoduleshavetsupplements |
first_indexed |
2023-05-20T17:45:21Z |
last_indexed |
2023-05-20T17:45:21Z |
_version_ |
1796154011632533504 |