On the generators of the kernels of hyperbolic group presentations

In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some addit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Chaynikov, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154774
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154774
record_format dspace
spelling irk-123456789-1547742019-06-16T01:32:42Z On the generators of the kernels of hyperbolic group presentations Chaynikov, V. In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided. 2011 Article On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F67, 20F06. http://dspace.nbuv.gov.ua/handle/123456789/154774 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided.
format Article
author Chaynikov, V.
spellingShingle Chaynikov, V.
On the generators of the kernels of hyperbolic group presentations
Algebra and Discrete Mathematics
author_facet Chaynikov, V.
author_sort Chaynikov, V.
title On the generators of the kernels of hyperbolic group presentations
title_short On the generators of the kernels of hyperbolic group presentations
title_full On the generators of the kernels of hyperbolic group presentations
title_fullStr On the generators of the kernels of hyperbolic group presentations
title_full_unstemmed On the generators of the kernels of hyperbolic group presentations
title_sort on the generators of the kernels of hyperbolic group presentations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154774
citation_txt On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT chaynikovv onthegeneratorsofthekernelsofhyperbolicgrouppresentations
first_indexed 2023-05-20T17:45:21Z
last_indexed 2023-05-20T17:45:21Z
_version_ 1796154011848540160