On the generators of the kernels of hyperbolic group presentations
In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some addit...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154774 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154774 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1547742019-06-16T01:32:42Z On the generators of the kernels of hyperbolic group presentations Chaynikov, V. In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided. 2011 Article On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F67, 20F06. http://dspace.nbuv.gov.ua/handle/123456789/154774 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided. |
format |
Article |
author |
Chaynikov, V. |
spellingShingle |
Chaynikov, V. On the generators of the kernels of hyperbolic group presentations Algebra and Discrete Mathematics |
author_facet |
Chaynikov, V. |
author_sort |
Chaynikov, V. |
title |
On the generators of the kernels of hyperbolic group presentations |
title_short |
On the generators of the kernels of hyperbolic group presentations |
title_full |
On the generators of the kernels of hyperbolic group presentations |
title_fullStr |
On the generators of the kernels of hyperbolic group presentations |
title_full_unstemmed |
On the generators of the kernels of hyperbolic group presentations |
title_sort |
on the generators of the kernels of hyperbolic group presentations |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154774 |
citation_txt |
On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT chaynikovv onthegeneratorsofthekernelsofhyperbolicgrouppresentations |
first_indexed |
2023-05-20T17:45:21Z |
last_indexed |
2023-05-20T17:45:21Z |
_version_ |
1796154011848540160 |