Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆

e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Moura, A., Pereira, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154775
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154775
record_format dspace
spelling irk-123456789-1547752019-09-01T11:38:37Z Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ Moura, A. Pereira, F. e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules. 2011 Article Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:17B10, 17B70, 20G42. http://dspace.nbuv.gov.ua/handle/123456789/154775 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
format Article
author Moura, A.
Pereira, F.
spellingShingle Moura, A.
Pereira, F.
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
Algebra and Discrete Mathematics
author_facet Moura, A.
Pereira, F.
author_sort Moura, A.
title Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_short Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_full Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_fullStr Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_full_unstemmed Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_sort graded limits of minimal affinizations and beyond: the multiplicity free case for type e₆
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154775
citation_txt Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT mouraa gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6
AT pereiraf gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6
first_indexed 2023-05-20T17:45:21Z
last_indexed 2023-05-20T17:45:21Z
_version_ 1796154019345858560