Generalized ⊕-supplemented modules
Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154834 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is generalized ⊕-supplemented. If M is a generalized ⊕-supplemented module with (D3), then every direct summand of M is generalized ⊕-supplemented. We also give some properties of generalized cover. |
---|